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Introduction



What is swarm robotics?
● Swarm robotics is an approach to the 

coordination of multiple robots as a system which 
consist of large numbers of mostly simple 
physical robots.

● A collective behaviour emerges among the robots 
via interactions among themselves and with the 
environment

● We don't have to make individual robots more 
intelligent but make them capable to forming  a 
collective intelligent behaviour



Desert Harvester Ants
● Emulate their foraging strategies.

● They have evolved to collect many seeds 
as quickly as possible without exhaustively 
collecting all.

● They use site fidelity and pheromones 



iAnt Robot
●  Made up of inexpensive components.

● Can be multiplied to produce swarms.

● Are robust to communication errors.

● Inexpensive components leads to 
increased sensor errors and a higher 
likelihood of hardware failure.



Foraging Strategies via robots
1. Testing was done with iAnt robots.
2. Robot behaviours were specified by central-placed foraging algorithm 

(CPFA), that mimics the behaviours of seed-harvester ants.
3. The performance of CPFA was optimised using GA by evolving the 

movement, sensing and communication with the help of environment 
evaluation.

With this we are not just evaluating ant behaviour of foraging, but also the 
evolutionary process that combines these behaviours into integrated strategies.



● Ants collect seeds more quickly when the seeds were clustered.

● Foraging in heterogeneous clustering requires more complex communication, 
memory and environmental sensing strategies which are the common 
problems faced by animals in natural environment.

● Evolutionary Robotics 

● Using neural networks 

● Genetic algorithms and reinforcement learning for switching behaviours in 
robots



Insights 

1. Success of a foraging strategy depends strongly on spatial distribution of 
resources that are being collected.

2. Site fidelity and pheromones are critical components for foraging strategies 
when resources are clustered. 



https://docs.google.com/file/d/1RuBfGZFjWf_COVNY2fj4v8xhefgy5Z4b/preview


Methods

1. CPFA Parameters
2. CPFA Algorithm
3. Genetic Algorithm
4. Experimental Setup
5. Measuring 

Performance



Central Place Foraging Algorithm Parameters



As a robot moves to a search location, it may give up traveling and instead begin 
searching from its current location. This parameter short circuits absurdly long 

trips to found resources in the hopes of discovering something closer.

[0.0, 1.0]



Robots that are currently searching for resources may give up their search and 
return to the nest. This gives them the chance to follow pheromones or return to a 

previous site fidelity location.

[0.0, 1.0]



When uninformed, robots travel by (1) randomly selecting a turning angle in the 
range [0, ω], (2) turning, and (3) moving a fixed step size. Low values of ω 

produce straighter paths that cover long distance versus high values of ω that 
produce sharp turns that exhaustively search a local region.

[0.0, 4π]



When informed, robots search a local area thoroughly by making sharper turns in 
between travel steps. That is, ω is temporarily increased in value and decays to its 

original value over time. This parameter throttles the speed of the decay.

[0.0, e^5.0]



After finding a resource and returning to the nest, a robot may return to the last 
location it found a resource with the probability defined by this parameter in the 
Poisson CDF where λ = the rate of site fidelity and k = the resource density: the 
number of resources detected by the robot when it discovered a resource and 

scanned the immediate area.

[0.0, 20.0]



After finding a resource and returning to the nest, a robot may lay a pheromone 
with the probability defined by this parameter used in the Poisson CDF where λ = 
the rate of laying a pheromone and k = the resource density. In other words, we 

calculate the likelihood of finding at least k additional resources.

[0.0, 20.0]



When a robot “lays” a pheromone, it produces an (x, y) coordinate point with an 
associated weight value and stores it in a list. This weight (defined as 𝛾) decays 
over time, and the rate of this decay is throttled by this parameter. Pheromones 

with a weight below the threshold (defined as 0.001) are deleted.

[0.0, e^10.0]



What the heck is a digital pheromone?
1. a robot finds a resource

2. the robot records its position: P = (x, y) and counts the number of other local 
resources by spinning in a circle and observing the immediate area

3. P = the site fidelity waypoint a robot will return to if it uses site fidelity

4. P also = the pheromone waypoint location shared with the swarm
a. if a robot follows a pheromone, it navigates to this (x, y) position
b. pheromones decay over time and are eventually deleted
c. position recording and physical navigation is a NOISY process

5. how a robot chooses a specific pheromone is not explicitly defined



try to lay 
pheromone

try to use site 
fidelity

OR try to use a 
pheromone

OR choose a 
random location

if a resource is 
found



● GA fitness = total number of 
resources collected in a finite time 
period

● the GA evolves the 7 CPFA 
parameter values for three types of 
distributions:
○ clustered 
○ power law
○ random 

Genetic Algorithm



Genetic Algorithm
● 1 evolutionary process = 100 simulated robot swarms run for 100 generations

○ 1 generation = 8 simulation runs
○ 10 evolutionary processes are run in total

● gene values: CPFA parameters

● recombination (AKA crossover): combine the gene values of two parents to produce new offspring

● mutation: altering one more more gene values from its initial state

● tournament selection: choosing the best gene value set by running the same experiments (I.E., the 
same resource distributions) for each gene set and choosing the best

● elitism: copy the best gene value set, unaltered, into the next generation



Experimental Setup
physical experiments

● run for 1 hour
● 100 square meter arena
● 256 resources
● lamp beacon for finding the nest
● robots transmit position data one-way over 

WiFi
● a central server saves, updates, and 

shares pheromones

simulated experiments

● run for 1 simulated hour
● 125 x 125 cellular grid, each cell 

representing an 8 x 8 cm square
● 256 resources
● no collisions
● simulated sensor and localization error



Measuring Performance

Error Tolerance

E1 is the efficiency of a strategy evolved 
assuming no error.

E2 is the efficiency of a strategy evolved in the 
presence of error.

Measures how well robots mitigate the effects of 
error inherent in hardware (or simulated error).

Flexibility

E1 is the efficiency of the BEST strategy 
evolved for a given resource distribution.

E2 is the efficiency of an ALTERNATIVE 
strategy evolved for a different resource 
distribution tested on E1’s resource distribution.

Scalability uses this formula and measures the 
number of robots instead of strategies.

Efficiency is the total number of resources collected in a fixed (1 hour) time period.



Results

1. Error Tolerance

2. Flexibility

3. Scalability



Error Tolerance
Does introducing error to the 
world affect the efficiency of 
an evolved foraging 
strategy?

It is interesting to note that 
after approximately 20 
generations, the fitness 
stabilizes for all three 
distributions.

This shows that robots with 
error are always less efficient 
than robots without error. 



Error Tolerance
Adapting to error allows for 
an increase in efficiency.

Error-adapted swarms 
actually outperform 
non-error-adapted swarms 
on the clustered and power 
law distributions. 

Random distributions did not 
see a significant statistical 
change.



Error Tolerance
The individual robot’s sensor errors 
are compensated for by the evolved 
strategy.

This results in a significantly higher 
probability that pheromones are 
used at lower values of c.

A small number of detected tags 
indicates the presence of nearby 
undetected tags.

Another form of compensation is to 
lower the rate of pheromone decay.



Flexibility
As expected, each evolved strategy is 
best at its own type of distribution.

Both specialist and generalist 
strategies are evolved.

The power-law-adapted strategy is 
sufficiently flexible on both of the other 
distributions.

If the distribution of resources is know 
a priori, a swarm would use a 
specialist strategy. Otherwise, it should 
use the most general strategy.



Flexibility
Each evolved strategy has tuned it’s 
parameters in ways that are to be 
expected. 

In clustered distributions, it makes 
sense that pheromones are more likely 
to be laid.

The power-law-adapted strategy 
shows the most variation, which 
mimics the variation in resource pile 
size.



Scalability
Swarm efficiency increases as swarm 
size increases.

However, individual robot efficiency 
decreases as swarm size increases.

The simulated swarms increasingly 
overestimate swarm efficiency.

This could be from inter-robot 
interference that is introduced in the 
physical tests. However, researchers 
found that collisions are not a cause 
for the overestimation. 



Scalability
Robots that are part of a larger 
swarms have to travel greater 
distances to collect more resources, 
reducing individual efficiency.

The GA compensates for the reduced 
individual efficiency.

This compensation is what allows the 
swarm to gain back some of the lost 
individual efficiency. 

The use of information increases 
efficiency.



Scalability
As swarm size increases, the 
variation in uninformed searches 
decreases. This makes up for the 
increases possibility of more 
robots being nearby.

Pheromone usage is also related 
to swarm size. Bigger swarms 
rely less on pheromones.

This prevents over-exploitation of 
resources by not recruiting too 
many robots to harvest a single 
resource pile.



Discussion
1. Conclusion
2. Interpretation
3. Going Forward



Summary
The system evolved successfully to collectively adapt 
to a variety of conditions using only 7 parameters 
and, importantly, by selecting individual behaviors. 

Specifically, the importance of pheromone 
communication was sensitive to navigation and 
sensing error, resource distribution, and swarm size.

Condition-specific evolution produced the highest rate 
of foraging efficiency, whereas condition-specific 
evolutions applied to different distributions showed 
reduced efficiency in all cases.

The focus on optimizing combinations of parameters 
for the GAs was not only effective, but also mirrored 
natural evolution.



Interpretation
This system allows for new insight into how 
memory, communication, and movement 
change based on foraging conditions, which 
is not available to experiments under natural 
environments.

In these experiments, individuals within 
smaller swarms were more likely to lay 
pheromones than those in larger swarms. 
This conflicts with current hypotheses that 
communication is positively correlated with 
colony size. This is possibly due to what 
kinds of environments are prefered by 
collectives of different sizes.



Going Forward
This system could be used to test current 
biological hypotheses, or generate new ones.

Possibly, this system could be used to test the 
balance between communication and memory for 
different resource distributions.

The relationship between communication and 
colony size is also an avenue for future study, due 
to the conflicts between this research and current 
hypotheses.


