A Unified Approach to Evolving Plasticity and Neural Geometry

Kristiana Rendon, Luke Gehman, and Demitri Maestas

The Brain & Neuroevolution

Creating Artificial Neural Networks

- Hard to replicate brain as artificial neural networks (ANNs)
- Very dynamic, module, and regular
- Neuroevolution = autonomously generating ANNs
 - Evolutionary algorithms

http://graphonline.ru/en/

- Still can't compare to real brain
- neural topology!= neural topography
 - Important for spatial organization

https://fineartamerica.com/featured/2-top-view-of-normal-brain-illustration-gwen-shockey.html

NEAT

NeuroEvolution of Augmenting Topologies

- Evolves increasingly large ANNs
- Takes simple network \rightarrow adds nodes/connections via mutations
- Searches networks
 - More complex network takes more time
- Direct encoding
 - Each part of solution (gene) gets its own mapping (BAD)
 - lacktriangleright similar genes ightarrow different encoding ightarrow more searching
- Does not scale well

HyperNEAT

Hypercube-based NEAT

- Indirect encoding
 - Encode solution as function of geometry
 - patterns/regularities (symmetry, repetition)
 - Can compress and reuse these patterns
 - o CPPNs
- Nodes/connections need to be placed in certain geometric locations
 - Exploit topography
 - Beneficial for neuroevolution
 - More like real brain

CPPNs

Compositional Pattern Producing Networks

- Abstracted version of DNA
 - Compactly encodes patterns of weights across network's geometry
- Function input = node locations and role
- Function output = weights of connections
- Function return = topographic pattern (substrate)
- Composition of functions/regularities
 - Gaussian (symmetry) and periodic (repetition)
- Can be evolved by NEAT

Still Not Good Enough

- Static implementations
- No online adaptation
- Needs learning rules
- Needs to be more biologically plausible
- Needs to know locations and roles
- Evolvable-substrate and adaptive HyperNEAT can help

Evolvable Substrate HyperNEAT

-Locations of hidden nodes determined by CPPN

-The CPPN paints a picture of activations

-Chose nodes which give the most information using quadtree algorithm

Quadtree algorithm

Quadtree + band pruning

Adaptive HyperNEAT

- -Want network which adapts to observations?
- -CPPN produces parameters for Hebbian Learning

$$\Delta w_{ji} = \eta \cdot [Ao_j o_i + Bo_j + Co_i + D]$$

Adaptive ES-HyperNEAT

- Simultaneously evolves geometry, density, and plasticity, using a combination of the previously developed versions of NEAT.
- CPPN generates 6 additional outputs: Learning rate (n),
 Correlation term (A), presynaptic term (B), postsynaptic term
 (C), constant (D), and modulation (M). Used to simulate Hebbian learning!

$$\Delta w_{ji} = \eta \cdot [Ao_j o_i + Bo_j + Co_i + D]$$

$$m_i = \sum_{w_{ji} \in Mod} w_{ji} \cdot o_j.$$

Adaptive ES-HyperNEAT

- Each Neuron computes its own modulatory activation (m), which we use to adjust weights of connections between neurons

$$m_i = \sum_{w_{ji} \in Mod} w_{ji} \cdot o_j.$$

$$\Delta w_{ji} = tanh(m_i/2) \cdot \eta \cdot [Ao_j o_i + Bo_j + Co_i + D].$$

 Determines the placement and density of nodes from implicit information gained from the weight output and the modulatory output from the CPPN

Adaptive ES-HyperNEAT

An example of an ANN generated by it's respective CPPN

Continuous T-Maze Experiment

- Standard test of operant conditioning in animals
- Augmented T-Maze; Higher valued reward is achieved in sequence
- No sensor pre-processing needed, direct input into Adaptive ES-HyperNeat, sensors are correlated geometrically
- Fitness function is maximized when the same reward is consistently collected.
- Ran with:

1000 generations, 300 individuals, 10% elitism

Crossover offspring with no mutation (~50%) / direct offspring with mutation (~94%)

Results

- ES-HyperNEAT solving T-Maze at 1 out of 30 runs on average
- Adaptive ES-HyperNEAT found a solution in 19 out of 30 runs on average.
- Augmenting ES-HyperNEAT to adapt is important for adaptation tasks.
- No special sensors, only raw sensor input.
- Neural dynamics start to represent dynamics in nature.
- A single compact CPPN can encode a full adaptive network with full plasticity.