A Unified Approach to
Evolving Plasticity and
Neural Geometry

Kristiana Rendon, Luke Gehman, and Demitri Maestas



The Brain & Neuroevolution

Creating Artificial Neural Networks

e Hardtoreplicate brain as artificial neural networks (ANNs)

Frontal lobes

e Verydynamic, module, and regular

Superior frontal sulcus %
e Neuroevolution = autonomously generating ANNs Micdie frontl gyrus v
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Precentral gyrus

Central sulcus

o  Still can’t compare to real brain Postcentral gyrus

Postcentral
sulcus

o neural topology != neural topography

[ ] Important for spatial organization

Parietal lobe

Longitudinal fissure -
Lunate sulcus
Occipital lobe

https://fineartamerica.com/featured/2-top-view-of-normal-brain-illustra
tion-gwen-shockey.html

http://graphonline.ru/en/



https://fineartamerica.com/featured/2-top-view-of-normal-brain-illustration-gwen-shockey.html
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NEAT

NeuroEvolution of Augmenting Topologies

e Evolvesincreasingly large ANNs
e Takessimple network — adds nodes/connections via mutations

e Searches networks
o  More complex network takes more time
e Directencoding

o  Each part of solution (gene) gets its own mapping

m  similar genes — different encoding — more searching

e Doesnot scale well



HyperNEAT

Hypercube-based NEAT

e Indirect encoding

o  Encode solution as function of geometry
m  patterns/regularities (symmetry, repetition)
o  Cancompress and reuse these patterns

o  CPPNs

e Nodes/connections need to be placed in certain geometric locations
o Exploit topography
o  Beneficial for neuroevolution

o More like real brain



CPPNs

Compositional Pattern Producing Networks

Abstracted version of DNA

o  Compactly encodes patterns of weights across network’s geometry

e Function input = node locations and role
e Function output = weights of connections
e Function return = topographic pattern (substrate)

e Composition of functions/regularities

o  Gaussian (symmetry) and periodic (repetition)

e Canbeevolved by NEAT



1) Query each potential 2) Feed each coordinate pair into CPPN

connection on substrate
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HyperNEAT: Potential connections — CPPN — Weight of connections



\ Still Not Good Enough

e Staticimplementations

e Noonline adaptation

e Needs learningrules

e Needs to be more biologically plausible
e Needs to know locations and roles

e Evolvable-substrate and adaptive HyperNEAT can help



\ Evolvable Substrate HyperNEAT

-Locations of hidden nodes determined by CPPN
-The CPPN paints a picture of activations

-Chose nodes which give the most information
using quadtree algorithm
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Quadtree + band pruning

Quadtree algorithm



d. Complete Paths
/&\ I\

. Hidden to Output

ANN Construction

b. Hidden-to Hidden

a. Input to Hidden



\ Adaptive HyperNEAT

-Want network which adapts to observations?

-CPPN produces parameters for Hebbian Learning

Aw;; = n- [Aojo; + Boj + Co; + D]
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\ Adaptive ES-HyperNEAT

Simultaneously evolves geometry, density, and plasticity, using a
combination of the previously developed versions of NEAT.

CPPN generates 6 additional outputs: Learning rate (n),
Correlation term (A), presynaptic term (B), postsynaptic term

(C), constant (D), and modulation (M). Used to simulate Hebbian
learning!

A'wji =1n- [AOjOZ' - BOj —+ COi -+ D]

m; = Z-uu i€Mod Wyi -



Adaptive ES-HyperNEAT

- Each Neuron computes its own modulatory activation (m),
which we use to adjust weights of connections between neurons

m; = Zufj ;€EMod Wji -

Awj; = tanh(m;/2) - n -[Aojo;+Bo;+Co;+D].

-  Determines the placement and density of nodes from implicit
information gained from the weight output and the modulatory
output from the CPPN



Adaptive ES-HyperNEAT

(a) ANN (1,043 parameters) (b) CPPN (54 parameters)

An example of an ANN generated by it’s respective CPPN



Continuous T-Maze Experiment

H B®

Hidden Nodes

(a) T-Maze Learning (b) Substrate

- Standard test of operant conditioning in animals
- Augmented T-Maze; Higher valued reward is achieved in sequence

- No sensor pre-processing needed, direct input into Adaptive ES-HyperNeat, sensors are
correlated geometrically

- Fitness function is maximized when the same reward is consistently collected.
- Ran with:

1000 generations, 300 individuals, 10% elitism
Crossover offspring with no mutation (~50%) / direct offspring with mutation (~94%)
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(a) T-Maze Training (b) Neuron Activation

- ES-HyperNEAT solving T-Maze at 1 out of 30 runs on average

- Adaptive ES-HyperNEAT found a solution in 19 out of 30 runs on average.

- Augmenting ES-HyperNEAT to adapt is important for adaptation tasks.

- No special sensors, only raw sensor input.

- Neural dynamics start to represent dynamics in nature.

- A single compact CPPN can encode a full adaptive network with full plasticity.



