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Data obtained from biosurveillance can be used by public health systems to detect and respond to 14	
disease outbreaks, and save lives. However, existing data is distributed across large geographic 15	
areas, and both the quality and type of data vary in space and time. We discuss a framework for 16	
analyzing biosurveillance information to minimize detection time and maximize detection 17	
accuracy while scaling the analysis over large regions. We propose that strategies used by 18	
canonical biological complex systems, which are adapted to diverse environments, provide good 19	
models for the design of a robust, adaptive and scalable biosurveillance system. Drawing from 20	
knowledge of the adaptive immune system, and ant colonies, we examine strategies that support 21	
the scaling of detection in order to search and respond in large areas with dynamic distributions 22	
of data. Based on this research, we discuss a bio-inspired approach for a distributed, adaptive, 23	
and scalable biosurveillance system. 24	
 25	
 26	
Introduction 27	
 28	
Analyzing and responding to biosurveillance information is fundamental for the health of 29	
modern societies. Strategies for the detection of disease outbreaks have received considerable 30	
attention from researchers and policymakers, but making the development of a detection and 31	
actionable analysis approach scalable over large areas, and applicable to diverse populations, 32	
environments and social contexts, remains a formidable challenge. Disease outbreaks are 33	
inevitable, and early detection is necessary for adequate containment. However, more data exist 34	
than can effectively be analyzed, and those data are distributed across large geographic areas. 35	
Further, data sources are diverse (Gajewski et. al 2014, Althouse et al. 2015), noisy, variable in 36	
space and time, and have locally distinct contexts that can affect their interpretation. Therefore, 37	
intelligent, distributed and adaptive sampling, detection and response is required. Sampling and 38	
analyzing data with the goals of reducing detection time and maximizing accuracy is 39	
challenging. Additionally, scaling results to large and diverse areas is not feasible without a 40	
distributed approach. Current biosurveillance architectures that enable both local and global data 41	
analysis could also benefit from a scalable approach with decentralized authority to detect and 42	
respond.  43	
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 44	
How effectively strategies used by biological systems perceive information depends on how it is 45	
distributed in time and space. Biological systems respond to distributions of information across 46	
time by bet-hedging on uncertain information (Donaldson-Matasci 2001), and evolve rules (aka 47	
algorithms) that produce behaviors, or structures, shaped in response to the dynamics of the 48	
environment (Gordon 2016). Distributed and parallel solutions adapted to the distribution of 49	
resources or information in a system’s environment provide efficient strategies and structures 50	
adapted to the distribution of information. Marzen and Dedeo (2017) provide a theoretical 51	
framework for achieving	optimal information perception under competing constraints on 52	
accuracy and misclassification. This approach involves the evolution of a perceptual mapping 53	
operating on environmental information where the environment is defined by a stationary 54	
probability distribution as well as by a penalty function that imposes costs for misclassification 55	
by the perceptual mapping. Mapping accuracy is constrained by a cost proportional to the 56	
sophistication of the mapping as measured by the mutual information between the perceived 57	
state and the environment that induces the perception. This work highlights tradeoffs in the 58	
coupling between perception and environment, but focuses on a unitary rather than a distributed 59	
perceptual system.  60	
 61	
Complex systems in nature have evolved solutions adapted to distributed search and response. 62	
Immune systems and ant colonies scale search and automated response in dynamic environments 63	
using a distributed approach (Banerjee and Moses 2011) in which many agents can sample 64	
information from different locations. Ant colonies and immune systems have evolved solutions 65	
that rely on distributed local sensing to perceive their environment, establish an appropriate 66	
response, and dynamically adapt their response over time according to the spatial distribution of 67	
resources and varying complexity of the environment. The robust, adaptive and scalable 68	
computation realized by biological systems makes them suitable models for addressing problems 69	
that require distributed computation that is adaptive and scalable (Moses et al. 2013). 70	
 71	
Five RADAR principles proposed by Banerjee and Moses (2011) are common in complex 72	
systems and relevant to all systems that seek to adapt to information from dynamic 73	
environments. These principles are (1) Robustness, achieved by redundancy, flexible diversity 74	
and probabilistic response to partial information, (2) Adaptation to environment signals, (3) 75	
Decentralized control for search, (4) an Automated Response that is as distributed as the search, 76	
and (5) are scalable to millions of agents, conferring the ability to act in parallel.  In previous 77	
work (Banerjee and Moses 2011, Moses et al. 2013), we discussed how each of these principles 78	
is evident in ant colonies and immune systems. Extending this work here, we consider how the 79	
principle of decentralized control and search adapts to a dynamic distribution of resources, and 80	
scales to territory or body size increases. We start by describing biological distributed detection 81	
and search systems. Drawing from the immune system and ant colonies, we discuss the strategies 82	
that support the scaling of search and detection to large areas, and to dynamic distributions of 83	
resources by three adaptations: trafficking, or movement of agents through space; functional 84	
specificity or spatial memory; and hubs or temporary resident structures. Finally, we discuss the 85	
application of these concepts to a bio-inspired approach for a distributed, adaptive and scalable 86	
biosurveillance system.  87	
 88	
 89	
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Biological systems 90	

 91	
Immune systems and ant colonies use a distributed approach that adapts to dynamic distributions 92	
of pathogens or resources. Millions of ants in a colony, and trillions of cells in the immune 93	
system detect food or pathogens locally and scale efficiently with increase in size. Scale 94	
invariance is relevant to any problem where distributed detection can positively affect the 95	
efficiency of the system. Although ants and immune systems are spatially constrained, with 96	
behavior clearly adapted to their environment and the use of movement, memory, and local and 97	
global information balance, these systems accomplish their tasks efficiently regardless of 98	
organism or territory size (Banerjee and Moses 2011).  99	
 100	

The immune system  101	
 102	
It is unusual for biological systems to be scale invariant. Metabolic scaling theory proposes that 103	
most biological rates systematically slow as a function of body size due to the overhead of 104	
centralized transport and energy (West et al. 1997, Banavar et al. 2010). Whether immune 105	
response times systematically slow with body size is an important theoretical question (Weigel 106	
and Perelson 2004, 2009; Althaus 2015). There is some evidence of differences in immune cost, 107	
replication rates, and resulting duration of infectivity due to body size (Blaze et al 2017, Althaus 108	
2015, Banerjee, Perelson and Moses 2017). However scaling theory would predict that humans 109	
(10,000 times larger than mice) would have immune response times 10 times slower than mice; 110	
this has not been observed. We hypothesize that the apparent scale invariance of immune 111	
response is due to RADAR principle 3, decentralized search, an example of decentralized 112	
processing of information. We propose that scalability is achieved in the immune search for 113	
pathogens through three factors, trafficking, memory or functional specificity, and 114	
communication. 115	
 116	
Mammals rely on their immune system to detect and react to invading pathogens whose 117	
distribution in the body varies over time and space. Despite this dynamic environment, and 118	
widely varying body sizes, immune response times are nearly scale invariant (Banerjee and 119	
Moses 2011). When communication and actions are executed locally, each cell can respond 120	
quickly regardless of the size of the system. Distributed processing and the absence of central 121	
control lead to immune system computation that is highly scalable, through a combination of 122	
strategies such as T cell trafficking, functional specificity, and a balance of local and global 123	
communication. Trafficking and specificity allow for better homing to a particular tissue (Wong 124	
et al. 2016), thus enabling search strategies to adapt to local context and larger areas. All these 125	
strategies are all supported by dynamic structures in the immune system that support the 126	
adaptations of search to local context, and larger areas.   127	
 128	
Immune cells traffic through the body via a partially decentralized infrastructure: the lymphatic 129	
network transports immune cells to local regions where they either identify pathogens in lymph 130	
nodes or kill pathogens in tissue. In contrast to the systemic, centralized movement of cells 131	
though the cardiovascular network, immune cells traffic to particular tissues and recirculate 132	
between tissues and the local lymph nodes, through the lymphatic network in a way that balances 133	
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local and global movement of immune cells (Moses 2011, Banerjee & Moses 2011). The 134	
trafficking of T cells is a dynamic process. Following their development in the thymus, naïve T 135	
cells continually circulate throughout the body until they encounter foreign pathogens. When 136	
naive T cells recognize a pathogen, they divide and express molecules that help fight infection. 137	
Of this new population, 90–95% undergoes apoptosis, the rest remain close to the site of 138	
infection.  139	
 140	
As immune cells circulate, some stay close to the tissues where a pathogen is likely to reside. 141	
Human T cells have unique phenotypes with different degrees of tissue specificity (Wong et al. 142	
2016). Surviving T cells give rise to long-lived memory populations (Nolz et al. 2011). Resident 143	
memory T cells mediate immune memory, which generates long-lived non-recirculating cells 144	
that reside within the originally infected tissue. These cells are superior to circulating T cells at 145	
providing rapid long-term protection against re-infection in specific tissues (Jiang et al. 2012).  146	
In contrast to re-circulating T cells, resident T cells are positioned for rapid detection and 147	
response. Once a virus is detected, resident T cells respond to an infection by using the local 148	
tissue environment to recruit immune cells (Rosato et al. 2016). To ensure communication of 149	
learned pathogens throughout the body, a proportion of memory T cells, like naive cells, 150	
circulate throughout the body until they are needed (Omilusik and Goldrath 2017).  Memory T 151	
cells are maintained by continual recruitment of new cells from the circulation, suggesting a 152	
dynamic memory in the immune system that depends on a systemic source (Ely et al. 2006). 153	
 154	
Local and dynamic structures throughout the body support efficient search and response 155	
strategies. Search is focused in small lymph nodes where antigen-bearing cells are concentrated. 156	
Immune cells conduct efficient parallel search in lymph nodes where immune cells are 157	
introduced to potential pathogens in a small search space. Immune cell movement is evolved to 158	
sample multiple pathogens quickly (Fricke et al. 2016). Immune cells are guided by chemokines 159	
(Banerjee et al. 2011, Levin 2016) and structural cues (Mrass et al. 2017) in tissues. Guidance to 160	
sites of infection particularly speeds up search in large animals more than in small animals, 161	
decreasing time to clear infection in humans by orders of magnitude more than in mice (Banerjee 162	
et al. 2010).  163	
 164	
To support dynamic specificity of local search and response strategies, the immune system 165	
evolved temporary resident structures that allow the immune system to dynamically adapt to its 166	
environment. One such structure is the inducible bronchus-associated lymphoid tissue (iBALT), 167	
an immune system structure that develops in lung tissue in response to tissue inflammation.  168	
Present in larger numbers when local inflammation is chronic, iBALTs provide a local site for T 169	
cell priming and B-cell education to clear future infections in nearby tissue and enhance 170	
protective immunity against future respiratory pathogens (Foo et al. 2010). 171	
 172	
An efficient and proportionate response derives from having distributed memory realized 173	
through circulating and resident memory T cells. Antibodies are produced faster and more 174	
efficiently where the body experiences the same disease in the same general location. Thus a 175	
memory and movement dependent efficiency of response and proportionate response (not 176	
overreacting to the threat) are essential features of well-trained immune systems. 177	
 178	
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Distributed processing and the absence of central control in the immune system lead to scalable 179	
processing and response. Scalability is realized through a combination of T cell trafficking, 180	
functional specificity, and a balance of local and global communication. All of these factors, 181	
which make the immune system scalable, are possible because the immune system uses 182	
decentralized recognition of self from others that may be potential pathogens, and remembers 183	
previously encountered pathogens (Von Boehmer 1990) so that, for example, T cells are able to 184	
kill cells in tissue without any centralized input: negative selection ensures that T cells attack 185	
only non-self cells. Negative selection is the hallmark of the adaptive immune system enabling 186	
encoding of self and other. In scaling, these strategies, supported by dynamic structures, adapt 187	
search to local context, and larger areas.  188	
 189	
 190	
Ant colonies 191	
 192	
Ant colonies rely on individual foragers to search for food sources and bring them back to the 193	
colony. The distribution of these resources varies in space and time, so ant colonies use diverse 194	
foraging strategies (Lanan 2014) that emerge in response to direct and indirect social cues 195	
(Gordon 2010). Distributed foraging and lack of central control in ant colonies lead to scalable 196	
foraging and response. Scalability in ant foraging is achieved through a combination of foraging 197	
behaviors that involve distributed movement of individual ants, learning, remembering, and 198	
communicating the location of food resources. These foraging strategies are all supported by 199	
dynamic colony structures, nests and trails, and adapt to local context and territory size. We 200	
hypothesize that scalability of foraging in ant colonies, like the immune system, is due to 201	
RADAR principle 3, decentralized search, a means to process distributed information. This is 202	
possible through three strategies, autonomous movement of individual ants, memory, and 203	
communication that allows the colony to learn from individual sampling of information. 204	
 205	
The movement of individual ants in a colony reflects different strategies to retrieve food for the 206	
colony. The repertoire of foraging behaviors reflects the distribution of resources (Levin 2015). 207	
In prior modeling work we demonstrated that ant colonies effectively use different collective 208	
foraging strategies that respond to these distributions by combining a small set of simple 209	
behaviors tuned for a particular environment (Letendre et al. 2013, Hecker et al. 2015). These 210	
combined strategies make for effective search among large numbers of individuals connected by 211	
a distributed communication network. The resulting behaviors are not directed by any individual 212	
ant but, rather, emerge from interactions among individuals and from the interaction of the 213	
individuals with its local environment, where ants perceive information about the distribution of 214	
resources in their territory using only local sensing. An individual ant can learn and memorize 215	
information about the location of resources only from a small portion of its environment and 216	
respond to local conditions. However, the sampling of environmental information by ants 217	
through their movement, individual sensing, and communication among them through local 218	
interactions tends to overcome individual errors, improving collective function on average.  The 219	
combination of movement, memory and local perception paired with communication increases 220	
the repertoire of responses to varying quality of foraging sites. 221	
 222	
As colonies and their territories grow, search and communication strategies must vary 223	
accordingly. Ant colonies use additional behaviors and dynamic structures that allow them to 224	
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retain efficiency when searching. In large ant colonies, energy constraints prevent moving 225	
resources to one central nest. In response, ant colonies choose to deploy temporary structures 226	
(nests or trails) closer to locations where resources are more likely to occur. In a strategy 227	
analogous to the immune system, ant colonies distribute their nests, making their foraging 228	
spatially specific to a smaller area and allowing them to use behaviors adapted to the local 229	
environment. This is the case in polydomous ant colonies, which have evolved strategies to deal 230	
with the diminishing returns of central place foraging by establishing multiple interconnected 231	
nests with decentralized foraging. Argentine ants support distributed, adaptive foraging through 232	
dynamic foraging structures (nests and trails) that exist only when needed. Ephemeral trails 233	
connect to persistent trails, providing efficient routing, just as with virtual networks like cell 234	
phone towers (Flanagan et al. 2013).  235	
 236	
The ability of ant colonies to scale foraging to large territories using distributed, dynamic and 237	
adaptive structures leads to scalable processing and response. Like the immune system, ant 238	
colonies can efficiently scale to large territories through a combination of movement, local 239	
foraging, and a balance of local and global communication; they support these strategies by 240	
establishing dynamic support structures, temporary nests and ephemeral trails. 241	
 242	
 243	
Scale invariant biosurveillance  244	
 245	
From these principles and scaling strategies used by biological systems we posit that memory 246	
and movement are fundamental properties of adaptive biosurveillance. To maximize 247	
representation accuracy and minimize detection time, a combination of trafficking and spatial 248	
specificity is necessary.  This can be achieved by sampling adaptively and locally, matching the 249	
dynamic distribution of information in space and time, through deployment of distributed motile 250	
sensors, which can become specific and reside in the local environment, and through structures 251	
that create, and allow sensors to learn and respond in close proximity. The number, spatial 252	
distribution, functionality, and behavior of sensors will depend on the distribution of information 253	
and local context. To maximize representation accuracy, trafficking sensors are necessary to 254	
detect information that is randomly distributed in space or time. Once information clusters are 255	
found, more communication between sensors can lead to an efficient response. To minimize 256	
detection time, the use of individual memory, resident detectors, and physical structures 257	
analogous to temporary ant colony structures, memory cells, and iBALT can quickly respond to 258	
localized events or information, regardless of scale.  259	
 260	
Ants and immune systems have evolved strategies that solve distributed search and 261	
communication problems (Prabhakar 2012, Dorigo 2006). Some of these strategies mirror or 262	
inspire engineered approaches. The multi-place foraging algorithm for robot swarm by Lu et al. 263	
(2017) is an example of the efficiency provided by dynamic structures in an engineered system 264	
inspired by ant colony behaviors. The study demonstrates how using robotic depots that 265	
dynamically adapt to local information in their environment generates more flexible and scalable 266	
swarms. 267	
 268	
Due to the expansive size, anticipated growth rate and extent of modern biosurveillance data 269	
feeds, any potential approach must lend itself well to distributed computation. A balance 270	
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between local and global information processing can achieve detection that is appropriate 271	
geographically and produces optimal response times. Scale invariance in decentralized 272	
information processing systems is a must for information systems that operate over a large 273	
geographical extent, such as national biosurveillance. As with a partially decentralized immune 274	
system, we propose that a scalable design should follows RADAR principles with the addition of 275	
memory and movement for scalability, a system that thinks locally, but can act globally. 276	
Following these principles will result in a system that is: 277	
  278	

(1) robust, redundant, flexible, and stochastic responses to partial information by using 279	
sensors that utilize stochastic and inferential change detection able to predict, rather than 280	
only statistically describe;  281	

(2) adaptive to dynamic environmental information through sensors that are capable of 282	
processing multi modal information;  283	

(3) decentralized through local sampling and detecting, aggregating and analyzing 284	
information locally, using temporary or permanent local nodes as support structures, and 285	
increasing the spatial extent for aggregation of data according to the severity of the 286	
signal;  287	

(4) automated for efficient responses, distributed according to local detection; and 288	
(5) scalable to millions of agents through the use of a balance of autonomous trafficking 289	

through space to search for distributed information and to distribute information 290	
remembered locally, utilizing specificity, and resident structures to minimize detection 291	
and response time in a dynamic environment. 292	

 293	
A biosurveillance system consists of detection and analysis of harvested information. Detectors 294	
that are motile, able to learn from local context, use diverse information streams, along with 295	
temporary resident nodes that provide local aggregation can support scalability in a 296	
biosurveillance system. In previous work (Levin 2017), we described the implementation of an 297	
anomaly detector for health data based on the human immune system. Our negative selection 298	
algorithm detects anomalies in the large, complex data from modern health monitoring data 299	
feeds. The parallelized version of the algorithm demonstrates the potential for implementation on 300	
a scalable distributed architecture. Using strategies analogous to distributing search into lymph 301	
nodes of the immune system, these anomaly detectors have the potential to be motile, to be able 302	
to distinguish self and remember encounters with non-self, and to act as trafficking or resident T 303	
cells, making them the perfect detector for a robust, adaptive, and scalable national 304	
biosurveillance system.  Figure 1 illustrates our concept of a National Immune Network. 305	
Information nodes can form dynamically according to local information gathered by detectors. 306	
By varying cluster size and number of connections, we achieve an optimal global detection time 307	
and immediate local detection O(log(n/c)), where n is the number of nodes, and c is the number 308	
of nodes in a cluster. This ‘densification’ is an emergent property of technological networks 309	
(Kleiberg 2004). 310	
 311	
There are a number of biosurveillance scenarios that would improve using dynamic, adaptive 312	
detection, local training and residence, and global sharing of information. Biosurveillance efforts 313	
need to balance memory of events that occur in a specific spatial context while recognizing the 314	
motility of both people and pathogens that require the motility of detectors. For example, as a 315	
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result of sporadic cases, New Mexico hospitals are trained to detect bubonic plague in patients, 316	
while most other hospitals in the nation are not. This resulted in the death of a person from New 317	
Mexico when a hospital in South Carolina was not able to make a timely detection (Valentine 318	
1983). In a more recent incident (DePalma 2013), a case of bubonic plague was initially 319	
suspected of being a bio-terrorist attack because it was discovered in New York, a location with 320	
a different epidemiological context than New Mexico, the location where the infection occurred. 321	
Although the spatial incidence of disease may be more likely in some locations than others, 322	
human motility can cause disease spread to span large areas. While local biosurveillance nodes 323	
can develop specialized detectors, ensure the presence of locally trained detectors that work in 324	
combination with specialized nodes, detector motility provides a powerful tool to share detected 325	
information on a global scale. In contrast, Zika is an example of a local outbreak of a virus 326	
endemic to specific regions and recently detected in Florida. The Zika outbreak spurred a 327	
national effort to expand our detection ability. In this case, detectors informed by the local 328	
context can improve the efficiency of biosurveillance by acting locally and communicating 329	
globally only when needed, following the spatial patterns of the spread from the center of an 330	
outbreak to unexpected locations.  331	
 332	
Using a distributed, adaptive biosurveillance system we can also address questions about health 333	
behaviors such as opioid abuse. How does opioid abuse manifest itself in different regions of the 334	
country? Regional detectors can adapt to the regional context and behavior indicators specific to 335	
patterns of opioid abuse and spread. We can detect behaviors within those regions, and compare 336	
rural versus urban behaviors. A detector for one region may not work as well as a detector for 337	
another, but motile detectors would be a way to combine local context with global 338	
communication and eventually adapt to different regional contexts. 339	
 340	
The application of RADAR principles is not limited to the implementation of detection and 341	
analysis, it can be used to complement organizational practices in national agencies invested in 342	
biosurveillance. Managing biosurveillance data requires discriminating access to information, for 343	
example due to privacy, national security and other data sharing limitations, but requires 344	
transparency at the same time. RADAR suggests that information sharing can be effective when 345	
information is communicated locally. Regionalization, benchmarking, and sharing best practices 346	
can be seen as organizational analogies for keeping institutional memory/modeling robust in 347	
biosurveillance initiatives. 348	
 349	
Further studies would benefit from an extended mathematical framework for distributed 350	
perception. To characterize perception accuracy, an approach that perceives environmental 351	
information conditional on the position of perceptual nodes and detectors, and introduces inter-352	
agent communication with the quantification of associated costs and contributions to accuracy. 353	
This elaboration could be used to understand the relationship between information variability and 354	
distribution/specialization as an optimal detector design, as a function of relevant costs and 355	
communication designs. Immune systems and public health networks reward early detection of 356	
non-stationary processes. To characterize perception delays, penalties associated with delayed 357	
response may be captured as misclassification of stationary processes. Longer-term non-358	
stationarity is also of interest. We are interested not only in the optimal organization of 359	
perceptual networks, but also in the ability of that organization to efficiently track dynamics of 360	
the environmental signal over time. Studying the properties of optimal solutions will be helpful, 361	
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however attention to the processes driving structural dynamics will be needed for a design 362	
approach that utilizes different perspectives. 363	
 364	
 365	
 366	
 367	
 368	

  369	
  370	
Figure 1. A bio-inspired disease surveillance system with distributed information processing in information nodes 371	
(lymph nodes). shown as black ovals. The flow of information towards and between nodes is shown as black lines. 372	
Blue circles represent population density according to shade; darker shades of blue are more densely populated than 373	
lighter shades. Each node concentrates and processes information.  374	
  375	
 376	
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