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( 57 ) ABSTRACT 
Teams of robots can be organized to collectively complete 
complex real - world tasks , for example collective foraging in 
which robots search for , pick up , and drop off targets in a 
collection zone . A dynamic multiple - place foraging algo 
rithm ( MPFAdynamic ) is a scalable , flexible , and efficient 
algorithm for robot swarms to collect objects in unmapped 
environments . It achieves scalability through a decentralized 
architecture in which robots search without central control , 
and then return to mobile depots which provide collection 
and communication points . Mobile depots move closer to 
clusters of targets as robots discover them , which reduces 
robot transport time as well as collisions among robots . 
Flexibility is achieved by incorporating individual robot 
behaviors in which robots move and communicate in ways 
that mimic the foraging behaviors of ants . The MPFAdy 
namic algorithm demonstrates that dispersed agents that 
dynamically adapt to local information in their environment 
provide more flexible and scalable swarms . 
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SYSTEM AND METHODS FOR 
MULTIPLE - PLACE SWARM FORAGING 

WITH DYNAMIC DEPOTS 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit of U . S . Provi 
sional Patent Application No . 62 / 508 , 763 filed May 19 , 
2017 , incorporated by reference . 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

[ 0002 ] This invention was made with government support 
under MUREP # NNX15AM14A awarded by the National 
Aeronautics and Space Administration . The government has 
certain rights in the invention . 

FIELD OF THE INVENTION 
0003 ] The invention relates generally to swarm robotics . 
More specifically , the invention is directed to improved 
foraging performance of robotic swarms using methods for 
multiple - place foraging with dynamic depots . 

BACKGROUND 
[ 0004 ] Swarm behavior , or swarming , is a collective 
behavior exhibited by entities , particularly animals , of simi 
lar size which aggregate together . Swarm robotics is directed 
to the coordination of multirobot systems comprising a large 
number of physical robots . Swarm robotics is used to 
achieve a desired collective behavior that emerges from the 
interactions between the robots and interactions of robots 
with the environment . Swarm robotics research aims to 
design robust , scalable , and flexible collective behaviors for 
multiple autonomous robots . Simple rules and local inter 
actions among individual robots result in desired collective 
swarm behavior by self - organized coordination mecha 
nisms . Certain biological studies have revealed self - orga 
nized coordination mechanisms in social insects which can 
be effectively implemented in swarm robotics systems . 
[ 0005 ] One behavior of interest of robot swarms is “ for 
aging " behavior . Robots must retrieve objects from an 
environment and bring them back to a depot ( or nest ) . 
Effective collective foraging requires coordination , naviga 
tion , and communication and is therefore a useful abstrac 
tion of many complex , real - world applications such as 
humanitarian de - mining , search and rescue , intrusion track 
ing , collection of hazardous materials , and space explora 
tion . In particular , foraging is commonly used as a testbed 
for collective exploration , collective transport , and collec 
tive decision - making . 
0006 ] Central - place foraging is a canonical collective 
task commonly studied in swarm robotics . Robots depart 
from a centrally - placed depot to search for targets and return 
to this central place to deliver targets . The central - place 
foraging task can be instantiated into a number of real - world 
target collection applications , including crop harvesting and 
extra - planetary resource collection . One known central 
place foraging algorithm ( CPFA ) was designed to emulate 
seed - harvester ant behaviors governing memory , communi 
cation , and movement . CPFA uses one collection depot . 
Although the behaviors of this CPFA emulate harvester ant 

foraging that maximizes the number of targets collected in 
short foraging time periods , it is not designed for complete 
target collection . 
[ 0007 ] Distributed deterministic spiral algorithm ( DDSA ) 
used for foraging is a deterministic benchmark for central 
place foraging that is designed to collect the nearest targets 
first . When compared to the CPFA , robot swarms using the 
DDSA were faster at complete collection tasks . However , 
the CPFA outperforms the DDSA by collecting more targets 
in fixed time windows for large swarms , for example , those 
with more than 20 robots . The DDSA suffers from more 
robot collisions in more crowded environments . 
[ 0008 ] Although the CPFA is more scalable than the 
DDSA , CPFA swarms typically exhibit diminishing returns 
as swarm size increases ( i . e . sublinear scaling of foraging 
rate per robot given larger numbers of robots in the swarm ) . 
Diminishing returns are expected for central - place foraging 
because robots in larger swarms on average travel farther to 
collect more targets , and there are more collisions given 
more robots . 
[ 0009 ] Previous work has demonstrated that a single , 
central depot cannot serve a large number of robots effi 
ciently due to long travel times and heavy crowding . To 
mitigate this issue , the multiple - place foraging algorithm 
( MPFA ) was developed with multiple static depots ( MPFA 
static ) , where robots are programmed to always return to the 
depot closest to the position of the target that the robot has 
found . 

[ 0010 ] The MPFA was primarily inspired by behaviors 
observed in groups of insects and primates , as well as the 
immune system . For example , polydomous colonies of 
Argentine ants are comprised of multiple nests spanning 
hundreds of square meters ; additionally , a certain study 
showed that wasps living in multiple nests have greater 
survival rates and increased productivity . It was also shown 
that communities of spider monkeys can be considered as 
multiple central - place foragers ( MCPF ) , where monkeys 
select a sleeping site close to current feeding areas , and the 
MCPF strategy entails the lowest travel costs . In another 
biological system , it was shown that the decentralized , 
sub - modular nature of the immune system increases the 
foraging efficiency of immune cells that aggregate in lymph 
nodes distributed throughout the body . These dispersed 
aggregation points ( analogous to multiple nests ) speed up 
immune response rates , particularly in large animals that 
may have trillions of immune cells . Recently dynamic 
lymph nodes that appear near sites of infection have been 
discovered motivating the use of depots as dynamic aggre 
gation points for robotic foraging . 
[ 0011 ] The use of dynamic docks was introduced demon 
strating that mobile docks mitigate the spatial interference 
and improve overall task performance when mobile robots 
execute a transportation task and periodically recharge from 
a docking station . 
[ 0012 ] Multiple - place foraging also resembles the task 
allocation of global courier and delivery services , which use 
many distributed stores to collect and deliver packages 
efficiently . Several studies on task allocation in robot 
swarms have used biologically - inspired approaches in the 
deployment of homogeneous swarms of robots to multiple 
sites . These robots autonomously redistribute themselves 
among the candidate sites to ensure task completion by 
optimized stochastic control policies . In general , each 
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swarm is modeled as a hybrid system where agents switch 
between maximum transfer rates and constant transition 
rates . 
[ 0013 ] The use of multiple collection depots is the funda 
mental difference between the CPFA and the MPFA . MPFA 
mitigates the effects and outperforms central - place foraging 
swarms , but the MPFA is not capable of dynamically adapt 
ing to different target distributions . 
[ 0014 ] There is a need for an effective , decentralized 
search - and - collection foraging algorithm for ant - like robot 
swarms that mitigates scaling limitations and improves 
performance of robots retrieval of objects from an environ 
ment and returned to a depot . The invention satisfies this 
need . 

SUMMARY 
[ 0015 ] The invention is directed to multiple - place forag 
ing algorithm with dynamic depots ( MPFAdynamic ) . 
Depots are special robots which are able to carry multiple 
targets . Targets are objects such as mineral resources , haz 
ardous waste , or any item that needs to be retrieved from the 
environment and gathered at a location . The final delivery of 
targets that are collected by the depots depends on the 
application . Targets may be processed at the dispersed 
locations where they are collected ; they may be collected by 
another larger robotic agent that empties depots and delivers 
their contents to a central location ; or , as the depots become 
full , they may drive the targets to the desired location . 
[ 0016 ] A plurality of foraging robots may gather target 
objects without the use of a pre - programed map of an area 
of operation through the use of a foraging algorithm . The 
foraging robots may collect and deliver the target objects to 
a collection point , or depot , which itself may be a robot 
capable of carrying multiple target objects . Foraging robots 
may depart a depot in search of a target object , and , if the 
foraging robot encounters a target object , the foraging robot 
may transport the target object to the nearest depot , which 
may be a different from the depot from which the foraging 
robot departed . Certain information from the foraging robot 
regarding the location of the target objects may be relayed 
to the depot , which may then store , and then use the target 
object location information to reposition the depot to a 
location closer to the source of the target objects . The target 
object location information regarding the location of the 
target objects relative to the depot ' s position may also be 
shared to other foraging robots , thereby eliminating the need 
for a centralized control system to share the information 
with the remaining foraging robots . 
[ 0017 ] In other certain embodiments of the invention , a 
foraging robot may be directed through the use of a foraging 
algorithm to depart from a depot in search of a target object 
in a random , uninformed search pattern until a target object 
is located , and , if no target object is found , the foraging robot 
may return to the nearest depot and eventually resume the 
search . If a target object is found , the foraging robot may 
retrieve the object and then return to the site of the target 
object and resume the search for any remaining target 
objects . A foraging robot may communicate the location of 
the target objects through “ pheromones ” , or simulated way 
points , which may recruit other foraging robots to the 
location of the target objects . 
[ 0018 ] Advantageously , the use of certain embodiments of 
the foraging algorithm may drastically increase the effi 
ciency of the foraging robots to collect and return the target 

objects to a depot since the foraging robots are not required 
to transport the target object to the original depot from which 
it originated , but rather seek out the nearest depot to deliver 
the target objects . Moreover , in contrast to static depots , the 
mobile nature of the depots to reposition dynamically to a 
site near a source of target objects may reduce the incidence 
of collision between large numbers of foraging robots 
returning to a depot . Mobile depots improve swarm foraging 
performance , specifically : ( i ) the time required to collect a 
fixed fraction of the targets ( foraging time ) , ( ii ) the time 
required to detect and avoid collisions with other robots 
( collision time ) , ( iii ) the time that a robot spends searching 
for targets ( search time ) , and ( iv ) the time that a robot spends 
traveling to and from a depot when collecting targets ( travel 
time ) . 
[ 0019 ] The algorithms CPFA , MPFAstatic , MPFAglobal _ 
static , MPFAdynamic , MPFAglobal _ dynamic are reviewed 
and compared for how quickly targets are collected : across 
different distributions of targets . The algorithm according to 
the invention , MPFAdynamic , outperforms both the CPFA 
and the MPFAstatic on all performance criteria . MPFAdy 
namic performs approximately as well as MPFAglobal _ 
static and MPFAglobal _ dynamic - versions of the MPFA 
that rely upon global knowledge of target locations to 
determine depot locations — without depending on global 
communication . This is a significant advantage of MPFA 
dynamic because global information is costly to obtain , and 
reliance on centralized communication is a single point of 
failure and efficiency bottleneck . 
[ 0020 ] Scalability is determined by increasing the number 
of robots in the swarm and the size of the experimental 
arena . MPFAdynamic has better scalability than other algo 
rithms : increasing the arena size has a smaller negative effect 
on the foraging time of swarms using MPFAdynamic , and 
increasing swarm size in a large arena has a larger positive 
effect on the foraging time of those swarms . In addition , 
MPFAdynamic is implemented with depots that transport 
their targets to a central depot , thus completing the central 
place foraging task . 
[ 0021 ] These features and advantages of the present inven 
tion will become more fully apparent from the following 
description and appended claims or may be learned by the 
practice of the invention as described below . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0022 ] The present invention can be better understood by 
reading the following detailed description of certain pre 
ferred embodiments , reference being made to the accompa 
nying drawings in which : 
[ 0023 ] FIG . 1 illustrates a flow chart of the steps per 
formed by a method for multiple - place swarm foraging 
according to an embodiment of the invention . 
[ 0024 ] FIG . 2 illustrates a diagram of a system including 
dynamically allocated depots according to an embodiment 
of the invention . 
[ 0025 ] FIG . 3 illustrates a diagram of an environment 
including dynamic depots according to an embodiment of 
the invention 
[ 0026 ] FIG . 4 illustrates a flow chart of the steps per 
formed by a method for moving depots according to an 
embodiment of the invention . 
[ 0027 ] FIG . 5 is code for the MPFA encoded in a robot 
controller according to an embodiment of the invention . 
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[ 0028 ] FIG . 6 is a chart of the real - valued parameters of 
the MPFA of FIG . 5 . 
[ 0029 ] FIG . 7A is a diagram of targets unclustered and 
spread in a uniform random distribution according to an 
embodiment of the invention . 
[ 0030 ] FIG . 7B is a diagram of targets partially clustered 
according to an embodiment of the invention . 
[ 0031 ] FIG . 7C is a diagram of clustered targets according 
to an embodiment of the invention . 
[ 0032 ] FIG . 8 is a box plot of the time for each algorithm 
to collect 88 % of the targets for three different classes of 
distributions of targets according to an embodiment of the 
invention . 
[ 0033 ] FIG . 9 is a box plot of the foraging time for swarms 
given simulated error with a noise coefficient e = 0 . 4 accord 
ing to an embodiment of the invention . 
10034 ] FIG . 10A is a box plot of the total travel time spent 
by all robots in each swarm according to an embodiment of 
the invention . 
[ 0035 ] FIG . 10B is a box plot of the total search time spent 
by all robots in each swarm according to an embodiment of 
the invention . 
[ 0036 ] FIG . 11 is a box plot of the total time spent per 
swarm avoiding collisions according to an embodiment of 
the invention . 
[ 0037 ] FIG . 12 is a box plot of the foraging time for each 
swam in various arena sizes and swarm sizes according to an 
embodiment of the invention . 
[ 0038 ] FIG . 13 is a box plot of foraging times for certain 
swarms according to an embodiment of the invention . 
[ 00391 FIG . 14 is a box plot of foraging times for certain 
swarms according to an embodiment of the invention . 

number of targets collected by the depot has not been met at 
step 118 , the robot departs the depot at step 120 . An 
individual robot may remember the location of a previously 
found target and repeatedly return to the same location , a 
process called site fidelity . Robots can also communicate 
using pheromones which are simulated as artificial way 
points to recruit robots to known clusters of targets . Robots 
that remember the location of a previously found target at 
step 122 will return to that previously found target site using 
site fidelity or pheromone recruitment and will search the 
target site thoroughly using an informed correlated random 
walk at step 124 . At step 108 , it is determined whether or not 
a target has been found . Robots that do not remember the 
location of a previously found target at step 122 will return 
to step 106 and search for targets using an uninformed walk . 
10043 ] The search strategy is evolved by a genetic algo 
rithm ( GA ) ; all robots use the same strategy , but make 
decisions probabilistically based on the interaction with the 
environment . Although robots are able to depart from and 
return to the nearest depot , robots still search globally , 
meaning that they are able to travel across the entire arena . 
100441 Pheromone trails are simulated using pheromone 
waypoints , which are only reported to the closest depot to 
the robot when it arrives at the depot . Robots can only send 
and receive pheromone waypoints when they are returning 
to a depot . An exponential decay function with a decay rate 
is selected by the GA to simulate the pheromone decay 
process . After a certain amount of time , the pheromone 
waypoint will have decayed below a threshold and will be 
removed from the depot ’ s list . When a robot arrives at the 
depot , it will probabilistically select a waypoint from that 
depot ' s list and travel to the location of the waypoint . The 
robot may also probabilistically choose to locally share 
information by sending pheromone waypoints to its current 
depot . The pheromone waypoints associated with a given 
depot are only locally available to robots returning to that 
depot . 
[ 0045 ] Since robots always return to the closest depot with 
a found target , the sensed information relevant to a given 
target neighborhood is always associated with the depot 
closest to the position of the identified neighborhood . Thus , 
the robots only travel from the closest depot to any given 
pheromone waypoint . 
[ 0046 ] Because pheromone waypoints are distributed 
across multiple depots , MPFA swarms require less commu 
nication among robots , and individual robots spend less time 
traveling back to the closest depot to make use of the 
information . Although certain methods use pheromone way 
points that are globally available to the entire swarm , these 
robots have access to more information such that individual 
robots take longer to travel back to the central depot and use 
the information . The GA balances these trade - offs automati 
cally by tuning the search strategies and optimizing the 
performance of each swarm , resulting in systematic changes 
in parameters governing pheromone laying and distance 
traveled from the depot as more depots are added . 
[ 0047 ] The invention improves swarm foraging perfor 
mance with depots that move to the centroid of known 
nearby targets in order to minimize the time and distance for 
foraging robots to transport those targets . If all of the 
positions of the targets are known , this positional informa 
tion can be used to calculate the optimal location of depots 
to minimize travel distance to all targets . This problem is 
analogous to clustering targets based on their distances to the 

DETAILED DESCRIPTION 
[ 0040 ] Foraging robots depart from a depot to forage for 
targets and then return to the closest depot to deliver these 
targets ( the closest depot may be different from the one the 
robot departed from ) . Depots move to new locations based 
on the mean positions of the remaining targets sensed by the 
robots . The positions of the sensed targets are stored at each 
depot when each foraging robot returns to that depot . The 
stored positions are relative to the depot ' s current location so 
that no central controller is needed to facilitate information 
sharing across the swarm . 
10041 ] FIG . 1 illustrates a flow chart of the steps per 
formed by a method 100 for multiple - place swarm foraging 
according to an embodiment of the invention . A robot 
initially disperses from a depot at step 102 and follows a 
randomly selected travel path at step 104 . Upon reaching the 
end of the travel path , the robot switches to searching for 
targets using an uninformed correlated random walk ( in 
which the robot has no knowledge of target locations ) at step 
106 . If the robot does not find a target at step 108 , the search 
terminates at step 110 and the robot moves to the closest 
depot at step 112 . 
10042 ] If a target is found at step 108 , the robot senses the 
local resource density at step 114 . The density is the number 
of targets sensed in the local region by robots . The size of the 
region a robot can detect is described more fully below . The 
robot retrieves the target at step 116 and delivers it to the 
closest depot at step 112 . If a certain number of targets have 
been collected by the depot at step 118 , the method is 
complete . The number of targets to be met may be a 
predetermined number or dynamic threshold number . If this 
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( Eq . 1 ) 
C + = NL N = 1 WiPi 

closest depot , where the sum of distances between targets to 
the center of the cluster is minimum . 
[ 0048 ] Given the locations of all targets in the arena , the 
k - means + + clustering algorithm calculates the locations of 
depots to minimize the travel distance required to collect all 
targets . FIG . 2 shows an example of a system 200 including 
dynamically allocated depots 204 , in which six piles of 
targets 202 are classified into four clusters 206 and four 
depots 204 are placed at the centroids of these clusters 206 . 
[ 0049 ] According to the invention , depots move to new 
locations based on the locations of the targets sensed by 
robots . Depots always move to the centroid of recently 
sensed targets , which are maintained in a list and updated 
whenever site fidelity or pheromone waypoints are used . If 
site fidelity is not used , or if pheromone waypoints decay , 
then those sensed targets are removed from the list and no 
longer contribute to the dynamic calculation of the depot ' s 
centroid . 
[ 0050 ] The use of mobile depots is the fundamental dif 
ference between MPFAstatic and MPFAdynamic . As in 
MPFAstatic , depots are initially distributed uniformly in 
MPFAdynamic , and robots are evenly distributed to each 
depot . Depots move to new locations based on the positional 
information of observed targets sensed by foraging robots . 
[ 0051 ] FIG . 3 illustrates a diagram of an environment 300 
including dynamic depots according to an embodiment of 
the invention . As shown in FIG . 3 , depot 302 is located at 
centroid c? . Centroid c , is the center of the sensed targets 
306 , 308 , 310 . Each sensed target 306 , 308 , 310 is defined 
by position ( P1 , P2 , P3 , . . . Px ) and a number of targets ( W1 , 
W2 , W3 , . . . W ) at each position . After some time , if targets 
312 at position p , are completely collected by robots , then 
the pheromone waypoints at p? decays . Each pheromone 
trail is represented by a starting waypoint and an ending 
waypoint at a depot , e . g . , depot 302 . Waypoints provide 
positional information maintained in lists in which phero 
mone strength of each waypoint decreases exponentially 
over time , as described by Equation 4 below . Waypoints are 
removed once their values drop below a threshold . Accord 
ing to one embodiment , the threshold value may be 0 . 001 , 
but any value is contemplated . If , at the same time , W4 
targets are sensed at a new location P4 , then the depot 304 
will move to the centroid cy of the sensed targets at positions 
P2 , P3 , and P4 . 
[ 0052 ] FIG . 4 illustrates a flow chart 400 of the steps 
performed by a method for moving depots according to an 
embodiment of the invention . Depots move to new locations 
based on the positional information of observed targets 
sensed by foraging robots . Depots are initially distributed 
uniformly at step 402 , and robots are evenly distributed to 
each depot . At step 404 , the robot departs from the depot . 
The robots detect one or more targets each at one or more 
locations at step 406 . For purposes of the invention , robots 
can sense targets within camera range , but cannot precisely 
measure the positions of these targets . Therefore , a robot 
only reports its current position and the number of targets 
detected ; the robot ' s current position approximates the cen 
troid of the targets that it has detected at step 408 . Each 
depot is moved at step 410 to the centroid c , of the sensed 
targets at time t , where c , is defined by Equation 1 : 

where w , is the number of sensed targets at location pi , and 
N is the total number of different locations where robots 
have sensed targets . 
[ 0053 ] According to the invention , seed - harvester ant 
behaviors are encoded into a robot controller according to 
the MPFA , illustrated in FIG . 5 using the real - valued param 
eters illustrated in FIG . 6 that specify movement , sensing , 
and communication according to a uniformed search varia 
tion , a probability of switching to a search , a probability of 
giving up the search , a rate of informed search decay , a rate 
of following site fidelity , a rate of laying pheromone , and a 
rate of pheromone decay . 
[ 00541 According to uninformed search variation , unin 
formed robots forage using a correlated random walk with 
fixed step length and direction 0 = N ( 0 , - 1 , o ) , where 0 , - 1 is 
the turning angle from the previous step , and a is the 
uninformed search variation ( or standard deviation ) , which 
determines the turning angle of the next step . 
[ 0055 ] According to the probability of switching to search , 
robots start at a depot and select a direction from a uniform 
random distribution u ( 0 , 1 ) , then travel in this direction 
away from the depot . Robots have a probability Ps of 
switching to an uninformed correlated random walk , where 
higher values of p , indicate shorter travel distances from the 
depot . 
[ 0056 ] According to the probability of giving up the 
search , at each step of the correlated random walk , robots 
that have not discovered a target may give up searching and 
return to the closest depot with probability Pr . 
[ 0057 ] According to the rate of informed search decay , if 
robots return to a previous location via site fidelity or 
pheromone waypoint , they search using an informed corre 
lated random walk , with standard deviation o defined by 
Equation 2 : 

0 = 0 + ( 21 - 0 ) e ^ át ( Eq . 2 ) 
[ 0058 ] As time t increases , ô decays to o , producing an 
initially undirected and localized search that becomes more 
correlated over time . This time decay allows robots to search 
locally where they expect to find a target , but to straighten 
their path and move to another location if no target is found . 
[ 0059 ] According to the rate of following site fidelity , the 
probability of a robot returning to a previous target location 
via site fidelity is governed by the Poisson cumulative 
distribution function ( Poisson CDF ) defined by Equation 3 : 

( Eq . 3 ) 
POIS ( k , 1f ) = e As 

i = 0 

where k is the number of additional targets detected in a 
previous location and the parameter of is the average 
number of detected targets . The Poisson CDF models the 
probability of following site fidelity given the number of 
detected targets k appropriately . The probability is highest 
when k = f Robots return to previous locations via site 
fidelity if the parameterized Poisson CDF exceeds a uniform 



US 2018 / 0333855 A1 Nov . 22 , 2018 

random value , POIS ( k , ast ) > u ( 0 , 1 ) , simulating a random 
sampling process that is weighted by the probability of 
following site fidelity for a given k . Otherwise , robots follow 
pheromone waypoints to previous target locations if phero 
mones are available . If no pheromone exists , robots return to 
traveling and searching using the uninformed correlated 
random walk . 
[ 0060 ] According to the rate of laying pheromone , the 
probability of creating a pheromone waypoint is also gov 
erned by the Poisson CDF ( Eq . 3 ) . Robots create waypoints 
for previous target locations if POIS ( k , ip ) > u ( 0 , 1 ) , where 
k is also the number of targets detected in a previous 
location . 
[ 0061 ] According to the rate of pheromone decay , phero 
mone waypoint strength y decays exponentially over time t 
as defined by Equation 4 : 

Apå ( Eq . 4 ) . 

[ 0062 ] Waypoints of each pheromone trail is removed 
once their value drops below a threshold , for example 0 . 001 . 
[ 0063 ] As mentioned above , robot controllers are evolved 
using the genetic algorithm ( GA ) to optimize the collective 
behavior of the entire robot swarm , where every robot in the 
swarm uses the same controller . According to one embodi 
ment , the controller is evolved in one set of simulations and 
evaluated in another set of simulations which are replicated 
100 times . Each foraging algorithm is run until the robot 
swarm collects the expected percentage of targets . There are 
an uncountable number of foraging strategies that can be 
defined by the real - valued parameters of the CPFA and 
MPFA . Given 100 real values of each parameter , there 
would be 1007 possible strategies . Additionally , the online 
decision making of each robot depends on interactions with 
environmental conditions . For example , following site fidel 
ity is determined by the condition of POIS ( k , at ) > u ( 0 , 1 ) , 
as described above . The sampled value from u ( 0 , 1 ) is 
random at each time , and the decision to use site fidelity 
depends on the value of k and the sampled random value . 
The GA provides a way to sample both parameter space and 
the effectiveness of the foraging algorithm evaluated in 
different environmental conditions . As an example , the 
parameters in FIG . 6 are independently evolved 16 times in 
order to generate 16 independent foraging strategies for each 
of the five foraging algorithms in each target distribution 
providing a total of 240 separate evolutionary runs ( 3 
distributionsx5 algorithmsx16 replicates ) . Each of these 
evolutionary experiments follows the process described 
more fully below . 
[ 0064 ] According to the invention , the GA is implemented 
using GAlib , a C + + Library of Genetic Algorithm Compo 
nents . For each generation of the GA , each candidate set of 
7 parameters is evaluated on 10 different random placements 
of targets . A 50 % uniform crossover rate and a 5 % Gaussian 
mutation rate with a standard deviation of 0 . 02 is used , and 
elitism to keep the fittest parameter set . The termination of 
the GA is based on three criteria : the convergence of fitness 
values , the diversity of parameter sets , and the number of 
generations . Fitness is simply defined as the number of 
targets collected in a specified foraging time . The GA will 
stop if the fitness has converged and the diversity is low ; 
otherwise , it will terminate after a set number of generations . 
According to the GA of the invention , 89 % of the evolu 
tionary runs terminate based on the convergence of fitness 
and low diversity . 

[ 0065 ] Performance of the MPFA was tested by conduct 
ing four sets of experiments using the swarm robot simulator 
Autonomous Robots Go Swarming ( ARGOS ) . In the first set 
of experiments , the foraging times of MPFAdynamic were 
compared to the CPFA and MPFAstatic , as well as to the two 
idealized versions of the MPFA that rely upon global knowl 
edge of target locations to determine depot locations , 
MPFAglobal _ static and MPFAglobal _ dynamic . The first set 
of experiments were conducted with 24 robots in a 10x10 m 
arena . 
[ 0066 ] In the second set of experiments , scalability of 
these algorithms were to larger arena sizes were tested . The 
rate of increase in foraging times with increasing arena size 
were examined 24 robots in increasing arenas : 10x10 m , 
12x12 m , 14x14 m , 16x16 m . 
10067 ] In the third set of experiments , the performance of 
each algorithm was tested in a very large arena ( 50x50 m ) 
with 96 robots . 
[ 0068 ] The fourth set of experiments account for trans 
portation by the mobile depots to a single central collection 
point . In these experiments , each of the mobile depots is a 
modified robot that carries targets to a central collection 
point ; thus , 4 robots are also added to the CPFA experiments , 
so foraging performance is evaluated with each having a 
10x10 m arena with 28 robots that ultimately deliver targets 
to a central place . 
[ 0069 ] For the first set of experiments , the parameters for 
the CPFA and MPFAs were each evolved separately as 
described above . The set of evolved parameters with the 
shortest foraging time is selected from the 16 sets of evolved 
parameters for the experiment . These sets of evolved param 
eters are subsequently used for the corresponding CPFA and 
MPFAs in the second , third and fourth experiments . 
[ 0070 ] Each experiment has one central depot in the 
CPFA , and four depots for each of the four MPFAs . In the 
fourth experiment , a central depot and four dynamic depots 
is included in the MPFAdynamic simulations . 
f0071 ] Foraging time is measured as the time for the entire 
swarm to collect 88 % of the 384 placed targets . This 
percentage is chosen since it is the inflection point in CPFA 
foraging performance after which there is an exponential 
increase in collection time and very high variance in per 
formance due to the sparsity of remaining targets . 
[ 0072 ] In the first set of experiments , the times for differ 
ent components of the foraging time are measured : travel 
time , search time , and collision time , described more fully 
below . 
[ 0073 ] Each of the five algorithms — CPFA , MPFAstatic , 
MPFAglobal _ static , MPFAdynamic , MPFAglobal _ dy 
namic — is tested on three different classes of target distri 
bution : targets placed in a uniform random distribution ( FIG . 
7A ) , targets placed in a partially clustered distribution ( FIG . 
7B ) , and targets placed in a highly clustered distribution 
( FIG . 7C ) . 
[ 0074 ] The partially clustered distribution uses a power 
law distribution of cluster sizes : 128 clusters that contain a 
single target , 32 clusters with 4 targets each , and 8 clusters 
with 16 targets each , for a total of 384 targets . This power 
law distribution of cluster sizes emulates that of many 
natural resource distributions in real - world environments . 
The fully clustered distribution has 6 clusters of 64 targets 
each . 
[ 0075 ] Each experiment is replicated 100 times . For each 
replicate , the individual targets , or centers of target clusters , 
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are chosen at random so that each replicate has a different 
target placement consistent with the distribution for that 
experiment . Thus , there are 1500 experimental runs ( 3 
distributionsx5 algorithmsx100 replicates ) for the first set of 
experiments , 6000 experimental runs ( one for each of 4 
arena sizes ) for the second set of experiments , 1500 runs for 
the third set of experiments , and 600 runs for the fourth set 
of experiments , for a total of 9600 separate experimental 
runs . 
[ 0076 ] MPFAdynamic is compared to the CPFA , MPFA 
static , MPFAglobal _ static , and MPFAglobal _ dynamic . 
Result illustrate that MPFAdynamic is faster than the CPFA 
and MPFAstatic , and similar in performance to MPFA 
global _ static and MPFAglobal _ dynamic . Results are pre 
sented in notched box plots to show which results are 
statistically different . Statistical significance is explicitly 
indicated by asterisks in the following figures ( p < 0 . 001 ) 
emphasized by the ellipses . Additionally , the notch on each 
plot indicates the 95 % confidence interval of the medians so 
that overlapping ranges of the notches indicate statistically 
indistinguishable results at the p = 0 . 05 level . The perfor 
mance of each algorithm is represented by a notched box 
plot in a different shade , ordered left to right , lightest to 
darkest in the same order indicated in the legend . If the 
notches of two boxes do not overlap , this indicates a 
statistically significant difference between the medians . 
[ 0077 ] Foraging performance is examined with respect to 
foraging time and robustness error . Foraging time of each 
swarm is the time required to collect 88 % of the targets . FIG . 
8 shows the time for each algorithm to collect 88 % of the 
targets for three different classes of distributions of targets . 
As shown in FIG . 8 , MPFAdynamic outperforms the CPFA 
and the MPFAstatic in all three distributions . The MPFA 
dynamic is 47 % faster than the CPFA in the partially 
clustered distribution and 18 % faster than the MPFAstatic in 
the clustered distribution . Surprisingly , the MPFAdynamic is 
either faster than both globally informed algorithms in the 
clustered distribution or statistically indistinguishable from 
them in the partially clustered distribution . It is slightly 
slower than MPFAglobal _ dynamic in the random distribu 
tion . 
[ 0078 ] Robustness error , or the effect of localization error , 
on foraging performance is examined . FIG . 9 shows forag 
ing time for swarms given simulated error with a noise 
coefficient e = 0 . 4 . This error results in robots returning to 
pheromone or site fidelity way - points at the far corner of a 
10x10 m arena being normally distributed around the 
intended destination , with 68 % of the robots within 3 m of 
the intended destination , a substantial amount of error when 
searching for targets that are 5 cm in radius . The experiments 
show that the foraging times of all algorithms increase 
moderately ( on average by 16 % ) with this level of error . 
However , MPFAdynamic still outperforms the CPFA and 
MPFAstatic in all three distributions with statistical signifi 
cance levels similar to the error - free evaluations . 
[ 0079 ] Foraging time is composed of two distinct activi 
ties . When a robot departs from a depot , it travels to a 
location where it starts a localized search for targets . Once 
a target is discovered , the robot takes approximately the 
same travel time back to the depot as it took to travel to the 
search location . The total travel time and search time spent 
by all robots in the warm is measured . The summed travel 
time and search time of all robots in each swarm are shown 
in FIG . 10A and FIG . 10B , respectively . In the MPFAdy - 

namic , travel time is reduced in all cases . Compared to the 
CPFA , the MPFAdynamic is up to 62 % faster ( in the 
clustered distribution ) ; compared to the MPFAstatic it is up 
to 30 % faster ( in the clustered distribution ) . Robots using the 
MPFAdynamic also search faster in all cases . Compared to 
the CPFA it is up to 51 % faster ( in the partially clustered 
distribution ) , and compared to the MPFAstatic ( up to 13 . 6 % 
faster in the partially clustered distribution ) . It is also faster 
than the globally informed MPFAs in the partially clustered 
distribution . It is slightly slower than MPFAglobal _ dynamic 
in the clustered distribution . 
[ 0080 ] According to an embodiment of the invention , if 
the distance between two robots is less than 25 cm , each 
robot will implement collision avoidance . Each robot senses 
the location of the other and turns left or right in order to 
avoid a collision , moving approximately 8 cm before resum 
ing traveling . The collision avoidance takes time and will 
increase foraging times , particularly when the swarm size is 
large . 

[ 0081 ] Collision time is the time spent to avoid a collision . 
The total collision time of each swarm is the sum of the total 
collision avoidance times for all robots in the swarm shown 
in FIG . 11 . The collision time for MPFAdynamic is less than 
the collision time for the CPFA in all cases , but it is more 
than the collision time for the globally informed algorithm 
with dynamic depots in the partially clustered distribution 
and for both globally informed algorithms in the clustered 
distribution . Not surprisingly , collision time is lowest in the 
random distribution where targets and robots are most 
dispersed , and highest in the clustered distribution where 
robots crowd around clustered target locations . 
[ 0082 ] FIG . 12 is a box plot of the foraging time for each 
swam for increasing arena sizes and swarm sizes according 
to an embodiment of the invention . As shown in FIG . 12 , 
foraging time increases as the arena size increases . MPFA 
dynamic outperforms the CPFA and MPFAstatic in all arena 
sizes and all three distributions . Its performance is similar to 
MPFAglobal _ static and MPFAglobal _ dynamic . The 
increase in foraging time is linear with the length of the 
foraging arena . However , in the clustered target environ 
ment , MPFAdynamic ( slope = 2 . 55 ) , MPFAglobal _ static 
( slope = 2 . 56 ) , and MPFAglobal _ dynamic ( slope = 2 . 21 ) have 
improved scalability compared to the CPFA ( slope = 5 . 04 ) 
and MPFAstatic ( slope = 4 . 61 ) as evidenced by the more 
shallow increase in per - robot foraging time with arena size . 
The slope of the regression for MPFAdynamic is not sig 
nificantly different from that of MPFAglobal _ static and 
MPFAglobal _ dynamic . 
[ 0083 ] To further test scalability , an arena is created 25 
times larger ( 50x50 m ) than the basic ( 10x10 m ) arena and 
foraging times for swarms of 96 robots are measured . FIG . 
13 shows foraging performance in this larger arena . MPFA 
dynamic still outperforms the CPFA ( up to 30 % in the 
clustered distribution ) and MPFAstatic ( upto 13 % in the 
clustered distribution ) in most cases . The MPFAdynamic is 
either better than or statistically indistinguishable from the 
MPFAglobal _ static and MPFAglobal _ dynamic in all cases 
suggesting that the MPFAdynamic is particularly effective 
for very large swarms and foraging areas . Again , asterisks 
indicate a statistically significant difference ( p < 0 . 001 ) with 
the MPFAdynamic emphasized by ellipses . 
[ 0084 ] The results demonstrate that by using mobile 
depots that adapt to local conditions , MPFAdynamic is an 
efficient and scalable solution that minimizes the central 
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place bottleneck of the CPFA and improves foraging times 
compared to MPFAstatic without requiring any global infor 
mation ( as required by MPFAglobal _ static and MPFA 
global _ dynamic ) . 
[ 0085 ] Real - time adaptive response is a key component of 
MPFAdynamic . Foraging robots adaptively respond to the 
targets they detect in the environment by making a real - time 
decision to communicate pheromones or to return to a 
previous search location using site fidelity . Depots make 
real - time adjustments each time a foraging robot drops off a 
target in order to move toward the centroid of the known 
target locations . The CPFA and MPFAstatic are both effec 
tive algorithms ; however , the additional real - time decision 
making of mobile depots decreases foraging times as shown 
in the above described experiments , and the decrease is 
greatest in the largest arenas and for clustered target distri 
butions ( FIG . 13 ) . 
[ 0086 ] MPFAdynamic is particularly effective compared 
to MPFAstatic for highly clustered targets . Foraging robots 
adaptively respond to clusters by using pheromones and site 
fidelity ; in turn , depots respond to the observations of the 
foraging robots by moving closer to clusters of targets . Thus , 
both foragers and depots respond to the environment to 
reduce the time to collect targets . The adaptive communi 
cation of foragers reduces search time , and the adaptive 
movement of depots reduces travel time . Real - time adapta 
tion to communicated information about target locations is 
particularly valuable when targets are highly clustered 
because each target found in a cluster confers more infor 
mation about the location of other targets in that cluster . The 
benefits of dynamic depot movement are likely to be even 
greater when targets are ephemeral — i . e . , appearing and 
disappearing over time and when the targets themselves 
are mobile because depots can move to new locations where 
targets appear so that they can be collected quickly . In 
addition to real - time decision - making , robots also respond 
adaptively to their environments over evolutionary time . 
[ 0087 ] MPFAdynamic offers a new perspective on the 
scaling problem . The use of multiple depots in the MPFA 
improves scaling compared to the CPFA , and having adap 
tive and dynamic mobile depots increases scalability even 
further . This advantage is particularly apparent when the 
targets to be transported are grouped into clusters , rather 
than randomly scattered , and when transport distances are 
very large ( i . e . , MPFAdynamic is nearly twice as fast as the 
CPFA and MPFAstatic for clustered targets in the largest 
50x50 m arena as shown in FIG . 13 ) . This suggests that 
adaptive mobile agents in robotic swarms can mitigate the 
inherent scaling inefficiencies of central - place transport . The 
experiments in FIG . 14 show that this holds even when the 
dispersed depots transport targets to a central nest . 
[ 0088 ] The success of MPFAdynamic also provides 
insight into biological mechanisms that improve scalability . 
While most biological scaling theory focuses on fixed , 
centralized transport networks , there are biological systems 
that have features similar to the depots of the MPFA . For 
example , the immune system , with multiple lymph nodes 
distributed throughout the search space of an organism , 
results in a highly scalable immune response with trillions of 
cells . Our prior works suggest that the partially distributed 
architecture of the immune system ( one in which lymph 
nodes act as depots ) is critical for overcoming the inherent 
scaling limitations of transporting targets . 

[ 0089 ] There is also evidence of mobile depots in the 
largest colonies of ants : invasive Argentine ant colonies are 
composed of a network of mobile nests connected by trails , 
and the dynamic patterns of recruitment and allocation of 
foragers to nests increases foraging efficiency . These 
examples suggest that in biological systems , as well as in 
robotic swarms , adaptive , decentralized , and mobile aggre 
gation points increase search efficiency . Thus , biological 
systems have evolved architectures with the same advan 
tages of MPFAdynamic : faster search and foraging , fewer 
collisions , and reduced travel time . 
[ 0090 ] While the invention is susceptible to various modi 
fications and alternative forms , specific exemplary embodi 
ments are shown by way of example in the following 
drawings which are described in detail . It should be under 
stood , however , that there is no intent to limit the invention 
to the particular embodiments disclosed . On the contrary , the 
intention is to cover all modifications , equivalents , and 
alternatives 5 falling within the scope of the invention as 
defined by the appended claims . 

1 . A method for multiple - place swarm foraging compris 
ing the steps of : 

providing an environment comprising a plurality of tar 
gets , a plurality of robots and a plurality of dynamic 
depots ; 

departing from a dynamic depot a robot ; 
following by the robot a randomly selected travel path ; 
searching for one or more targets by the robot , wherein the 

robot has no knowledge of target locations ; 
finding by the robot one or more targets in a region ; 
sensing by the robot a number of targets in the region ; 
collecting the one or more targets ; and 
delivering the one or more targets to a dynamic depot 

closest to the robot . 
2 . The method according to claim 1 , further comprising 

the steps of : 
comparing a number of collected targets to a predeter 
mined number or a dynamic threshold number ; 

departing again from the dynamic depot the robot if the 
number of collected targets do not meet or exceed the 
predetermined number or the dynamic threshold num 
ber ; 

returning by the robot to the previously found target site , 
wherein the robot has knowledge of target locations 
using site fidelity or pheromone recruitment ; and 

searching by the robot for one or more targets using an 
informed correlated random walk . 

3 . The method according to claim 1 , further comprising 
the steps of : 

comparing a number of collected targets to a predeter 
mined number or a dynamic threshold number ; 

departing again from the dynamic depot the robot if the 
number of collected targets do not meet or exceed the 
predetermined number or the dynamic threshold num 
ber ; and 

searching for one or more targets by the robot , wherein the 
robot has no knowledge of target locations . 

4 . The method according to claim 1 , further comprising 
the steps of : 

reporting by the robot its current position and a number of 
targets detected ; 

approximating a centroid of the one or more targets ; and 
moving the dynamic depot to the centroid Cx . 



US 2018 / 0333855 A1 Nov . 22 , 2018 

5 . The method according to claim 4 , wherein c , is defined 
by : 

searching for one or more targets by the robot , wherein the 
robot has no knowledge of target locations ; 

finding by the robot one or more targets in a region ; 
sensing by the robot a number of targets in the region ; 
reporting by the robot its current position and the number 

of targets detected ; 
approximating a centroid of the one or more targets ; 
moving the dynamic depot to the centroid ; 
collecting the one or more targets , and 
delivering the one or more targets to the centroid of the 
dynamic depot . 

12 . The method according to claim 11 , wherein the 
centroid c , is defined by : 

where w ; is the number of sensed targets at location Pi , and 
N is the total number of different locations where robots 
have sensed targets . 

6 . The method according to claim 1 , wherein the ran 
domly selected travel path of the following step is defined 
by : 0 , = N ( 0 , - 1 , o ) , where 0 , - 1 is a turning angle from a 
previous step , and o is an uninformed search variation that 
determines the turning angle of the next step . 

7 . The method according to claim 2 , wherein the informed 
correlated random walk of the searching step is defined by : 

ô = 9 + ( 2 - 0 ) e lidt 
where ô is a standard deviation , and as time t increases , ô 
decays to o . 

8 . The method according to claim 2 , wherein pheromone 
recruitment comprise the steps of : 

simulating pheromone trails using pheromone waypoints ; 
reporting pheromone waypoints to the depot closest to the 

robot when the robot arrives at the depot ; 
decaying strength of a pheromone waypoint ; and 
removing the pheromone waypoint from the environment 

that has decayed below a threshold number . 
9 . The method according to claim 8 , wherein the threshold 

number is 0 . 001 . 
10 . The method according to claim 8 , wherein pheromone 

waypoint strength y decays exponentially over time t as 
defined by : y = e - ipd . 

11 . A method for multiple - place swarm foraging compris 
ing the steps of : 

providing an environment comprising a plurality of tar 
gets , a plurality of robots and a plurality of dynamic 
depots ; 

departing from a dynamic depot a robot ; 
following by the robot a randomly selected travel path ; 

where w ; is the number of sensed targets at location Pi , and 
N is the total number of different locations where robots have sensed targets . 

13 . A system for multiple - place swarm foraging in an 
environment comprising : 

a plurality of targets ; 
a plurality of robots ; 
a plurality of dynamic depots , wherein each of the 
dynamic depots moves closer to a centroid one or more 
targets in the environment according to a number of 
sensed targets at location and a total number of different 
locations where robots have sensed targets . 

14 . The system according to claim 13 , wherein the cen 
troid c , is defined by : 

C7 = NZ WiPi 

where w ; is the number of sensed targets at location Pi , and 
N is the total number of different locations where robots 
have sensed targets . 

* * * * * 


